Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.886
Filtrar
1.
J Pharm Anal ; 14(3): 335-347, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38618242

RESUMO

Hyaluronan and proteoglycan link protein 1 (Hapln1) supports active cardiomyogenesis in zebrafish hearts, but its regulation in mammal cardiomyocytes is unclear. This study aimed to explore the potential regulation of Hapln1 in the dedifferentiation and proliferation of cardiomyocytes and its therapeutic value in myocardial infarction with human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CMs) and an adult mouse model of myocardial infarction. HiPSC-CMs and adult mice with myocardial infarction were used as in vitro and in vivo models, respectively. Previous single-cell RNA sequencing data were retrieved for bioinformatic exploration. The results showed that recombinant human Hapln1 (rhHapln1) promotes the proliferation of hiPSC-CMs in a dose-dependent manner. As a physical binding protein of Hapln1, versican interacted with Nodal growth differentiation factor (NODAL) and growth differentiation factor 11 (GDF11). GDF11, but not NODAL, was expressed by hiPSC-CMs. GDF11 expression was unaffected by rhHapln1 treatment. However, this molecule was required for rhHapln1-mediated activation of the transforming growth factor (TGF)-ß/Drosophila mothers against decapentaplegic protein (SMAD)2/3 signaling in hiPSC-CMs, which stimulates cell dedifferentiation and proliferation. Recombinant mouse Hapln1 (rmHapln1) could induce cardiac regeneration in the adult mouse model of myocardial infarction. In addition, rmHapln1 induced hiPSC-CM proliferation. In conclusion, Hapln1 can stimulate the dedifferentiation and proliferation of iPSC-derived cardiomyocytes by promoting versican-based GDF11 trapping and subsequent activation of the TGF-ß/SMAD2/3 signaling pathway. Hapln1 might be an effective hiPSC-CM dedifferentiation and proliferation agent and a potential reagent for repairing damaged hearts.

2.
Nanomaterials (Basel) ; 14(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38607116

RESUMO

Compared with purely electrical neuromorphic devices, those stimulated by optical signals have gained increasing attention due to their realistic sensory simulation. In this work, an optoelectronic neuromorphic device based on a photoelectric memristor with a Bi2FeCrO6/Al-doped ZnO (BFCO/AZO) heterostructure is fabricated that can respond to both electrical and optical signals and successfully simulate a variety of synaptic behaviors, such as STP, LTP, and PPF. In addition, the photomemory mechanism was identified by analyzing the energy band structures of AZO and BFCO. A convolutional neural network (CNN) architecture for pattern classification at the Mixed National Institute of Standards and Technology (MNIST) was used and improved the recognition accuracy of the MNIST and Fashion-MNIST datasets to 95.21% and 74.19%, respectively, by implementing an improved stochastic adaptive algorithm. These results provide a feasible approach for future implementation of optoelectronic synapses.

3.
Mar Environ Res ; 198: 106482, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38626628

RESUMO

Neuston, situated at the air-sea interface, stands as a crucial frontier in the realm of the global warming. Despite its unique habitat, there remains a need to substantiate the composition, diel dynamic and biotic-abiotic interaction of neustonic zooplankton in the tropical seas. In this study, we present rare observational data on neustonic zooplankton (0-20 cm) in the oligotrophic tropical South China Sea (SCS) during the summer of 2022. A total of eighteen samples were collected and analyzed, revealing the presence of fourteen taxa from eight phyla. The most prevalent group was Cypridina, accounting for 33.7% of the total abundance, followed by copepods (29.0%) and jellyfish (10.9%). Within copepods, the genus Pontella exhibited the highest relative abundance (38.0%). Additionally, each neuston taxon displayed unique diel distribution patterns. Cypridina was the most abundant taxon during the night (40.4%), while it shifted to copepod dominance during the day (50.4%). Among copepods, genus Pontella and larvae were dominant groups at night (44.7%) and during the day (30.0%), respectively. Moreover, a multivariate biota-environment analysis demonstrated that temperature, pH, dissolved oxygen and Si(OH)4 significantly impacted neuston composition. Notably, both jellyfish and sea snails showed a significant positive correlation with temperature, suggesting their potential dominance in the neuston community in response to future global warming in the oligotrophic tropical seas. This study lays a robust foundation for recognizing the neuston community in the oceanic SCS, and helps evaluate the long-term risks to neuston habitats under climate changes.

4.
Adv Sci (Weinh) ; : e2306979, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561968

RESUMO

Chiral nanomaterials with unique chiral configurations and biocompatible ligands have been booming over the past decade for their interesting chiroptical effect, unique catalytical activity, and related bioapplications. The catalytic activity and selectivity of chiral nanomaterials have emerged as important topics, that can be potentially controlled and optimized by the rational biochemical design of nanomaterials. In this review, chiral nanomaterials synthesis, composition, and catalytic performances of different biohybrid chiral nanomaterials are discussed. The construction of chiral nanomaterials with multiscale chiral geometries along with the underlying principles for enhancing chiroptical responses are highlighted. Various biochemical approaches to regulate the selectivity and catalytic activity of chiral nanomaterials for biocatalysis are also summarized. Furthermore, attention is paid to specific chiral ligands, materials compositions, structure characteristics, and so on for introducing selective catalytic activities of representative chiral nanomaterials, with emphasis on substrates including small molecules, biological macromolecule, and in-site catalysis in living systems. Promising progress has also been emphasized in chiral nanomaterials featuring structural versatility and improved chiral responses that gave rise to unprecedented chances to utilize light for biocatalytic applications. In summary, the challenges, future trends, and prospects associated with chiral nanomaterials for catalysis are comprehensively proposed.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38568759

RESUMO

This article proposes a dimensionality reduction approach to study the output regulation problem (ORP) of Boolean control networks (BCNs), which has much lower computational complexity than previous results. First, an auxiliary system which is much smaller in scale than the augmented system in previous approach is constructed. By analyzing the set stabilization of the auxiliary system as well as the original BCN, a necessary and sufficient condition to detect the solvability of the ORP is presented. Second, a method to design the state feedback controls for the ORP is proposed. Finally, two biological examples are given to demonstrate the effectiveness and advantage of the obtained new results.

6.
Opt Express ; 32(7): 11613-11628, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38571004

RESUMO

The increasing use of transparent ceramics in laser systems presents a challenge; their low damage threshold has become a significant impediment to the development of powerful laser systems. Consequently, it is imperative to undertake research into the damage sustained by these materials. Micropores, the most common structural defects in transparent ceramics, inevitably remain within the material during its preparation process. However, the relationship between the density and size of these micropores and their impact on nanosecond laser damage threshold and damage evolution remains unclear. In this study, we utilize the annealing process to effectively manage the density and size of micropores, establishing a correlation between micropores in relation to damage thresholds. This study confirms for the first time that micropores significantly contribute to laser damage, comparing and analyzing the damage morphology characteristics of both front and rear surfaces of transparent ceramics. It also presents, potential mechanisms that may contribute to these differences in damage. This paper offers guidance for controlling micropores during the preparation and processing of transparent ceramics with high laser damage thresholds. The findings are expected to further improve the anti-nanosecond laser damage capabilities of transparent ceramics.

7.
Med Educ Online ; 29(1): 2336332, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38560892

RESUMO

BACKGROUND: The scholarship of teaching and learning (SoTL) is a field of academic research that focuses on improving learning through reflective and informed teaching. Currently, most SoTL-related work is faculty-driven; however, student involvement in SoTL has been shown to benefit both learners and educators. Our study aims to develop a framework for increasing medical students' interest, confidence, and engagement in SoTL. METHODS: A student-led SoTL interest group was developed and a year-round program of SoTL was designed and delivered by student leaders of the group under the guidance of a faculty advisor. Individual post-session surveys were administered to evaluate participants' perceptions of each session. Pre- and post-program surveys were administered to evaluate the program impact. RESULTS: The year-round SoTL program consistently attracted the participation of medical students and faculty. Survey responses indicated strong medical student interest in the program and positive impact of the program. Increased interest and confidence in medical education research were reported by the student participants. The program design provided opportunities for student participants to network and receive ongoing feedback about medical education research they were interested or involved in. CONCLUSION: Our study provides insights for developing a framework that other institutions can reference and build upon to educate and engage students in SoTL.


Assuntos
Estudantes de Medicina , Humanos , Bolsas de Estudo , Aprendizagem , Docentes , Retroalimentação , Ensino , Currículo
8.
Talanta ; 274: 126075, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38604042

RESUMO

6-mercaptopurine (6-MP) as the effective anti-cancer drug was used for the treatment of Crohn's disease and acute lymphoblastic leukaemia, but the response to maintenance therapy was variable with individual differences. In order to control the dosage and decrease the side effects of 6-MP, a sensitive and stable assay was urgently needed for 6-MP monitoring. Herein, RuZn NPs with electrochemical oxidation property and oxidase-like activity was proposed for dual-mode 6-MP monitoring. Burr-like RuZn NPs were prepared and explored to not only exhibit an electrochemical oxidation signal at 0.78 V, but also displayed excellent oxidase-like performances. RuZn NPs were utilized for the dual-mode monitoring of 6-MP, attributing to the formation of Ru-SH covalent bonding. The colorimetric method showed good linearity from 10 µM to 5 mM with the limit of detection (LOD) of 300 nM, while the electrochemical method provided a higher sensitivity with the LOD of 37 nM in range from 100 nM to 200 µM. This work provided a new way for the fabrication of dual-functional nanotags with electroactivity and oxidase-like property, and opened a dual-mode approach for the 6-MP detection applications with complementary and satisfactory results.

10.
Cell Death Discov ; 10(1): 169, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589350

RESUMO

Corneal diseases are among the primary causes of blindness and vision loss worldwide. However, the pathogenesis of corneal diseases remains elusive, and diagnostic and therapeutic tools are limited. Thus, identifying new targets for the diagnosis and treatment of corneal diseases has gained great interest. Methylation, a type of epigenetic modification, modulates various cellular processes at both nucleic acid and protein levels. Growing evidence shows that methylation is a key regulator in the pathogenesis of corneal diseases, including inflammation, fibrosis, and neovascularization, making it an attractive potential therapeutic target. In this review, we discuss the major alterations of methylation and demethylation at the DNA, RNA, and protein levels in corneal diseases and how these dynamics contribute to the pathogenesis of corneal diseases. Also, we provide insights into identifying potential biomarkers of methylation that may improve the diagnosis and treatment of corneal diseases.

11.
Int J Biol Macromol ; 267(Pt 1): 131447, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38588843

RESUMO

The drug encapsulation efficiency, release rate and time, sustained release, and stimulus-response of carriers are very important for drug delivery. However, these always cannot obtained for the carrier with a single component. To improve the comprehensive performance of chitosan-based carriers for 5-Fu delivery, diatomite-incorporated hydroxypropyl cellulose/chitosan (DE/HPC/CS) composite aerogel microspheres were fabricated for the release of 5-fluorouracil (5-Fu), and the release performance was regulated with the content of diatomite, pH value, and external coating material. Firstly, the 5-Fu loaded DE/HPC/CS composite aerogel microspheres and Eudragit L100 coated microspheres were prepared with cross-linking followed by freeze-drying, and characterized by SEM, EDS, FTIR, XRD, DSC, TG, and swelling. The obtained aerogel microspheres have a diameter of about 0.5 mm, the weight percentage of F and Si elements on the surface are 0.55 % and 0.78 % respectively. The glass transition temperature increased from 179 °C to 181 °C and 185 °C with the incorporation of DE and coating of Eudragit, and the equilibrium swelling percentage of DE/HPC/CS (1.5:3:2) carriers are 101.52 %, 45.27 %, 67.32 % at pH 1.2, 5.0, 7.4, respectively. Then, the effect of DE content on the drug loading efficiency of DE/HPC/CS@5-Fu was investigated, with the increase of DE content, the highest encapsulation efficiency was 82.6 %. Finally, the release behavior of DE incorporated and Eudragit L100 Coated microspheres were investigated under different pH values, and evaluated with four kinetic models. The results revealed that the release rate of 5-Fu decreased with the increase of DE content, sustained release with extending time and pH-responsive were observed for the Eudragit-coated aerogel microspheres.

12.
Int J Biol Macromol ; 267(Pt 2): 131626, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38631590

RESUMO

Self-healing hydrogel is a promising soft material for applications in wound dressings, drug delivery, tissue engineering, biomimetic electronic skin, and wearable electronic devices. However, it is a challenge to fabricate the self-healing hydrogels without external stimuli. Inspired by mussel, the metal-catechol complexes were introduced into the hydrogel systems to prepare the mussel-inspired hydrogels by regulating the gelation kinetics of Fe3+ crosslinkers with gallic acid (GA) in this research. The amine-functionalized carboxymethyl cellulose (CMC) was grafted with GA and then chelated with Fe3+ to form a multi-response system. The crosslinking of carboxymethyl cellulose-ethylenediamine-gallic acid (CEG) hydrogel was controlled by adjusting the pH to affect the iron coordination chemistry, which could enhance the self-healing properties and mechanical strength of hydrogels. In addition, the CEG hydrogel exhibited great antibacterial and antioxidant properties. And the CEG hydrogel could strongly adhere to the skin tissue. The adhesion strength of CEG hydrogel on pigskin was 11.44 kPa, which is higher than that of commercial wound dressings (∼5 kPa). Moreover, the thixotropy of the CEG hydrogel was confirmed with rheological test. In summary, it has great potential in the application field of wound dressing.

14.
Med Educ Online ; 29(1): 2336331, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38577972

RESUMO

PURPOSE: Medical school educators face challenges determining which new and emerging topics to incorporate into medical school curricula, and how to do so. A study was conducted to gain a better understanding of the integration of emerging topics related to microbiology and immunology in the undergraduate medical curriculum (UME). METHODS: An anonymous survey with 17 questions was emailed to medical school faculty who teach immunology and/or microbiology through the DR-Ed listserv, the American Society for Microbiology (ASM) Connect listserv, and attendees of the Association of Medical School Microbiology and Immunology Chairs (AMSMIC) Educational Strategies Workshop. Participants were asked about experiences, perceptions, and the decision-making process regarding integrating emerging topics into UME. RESULTS: The top emerging topics that were added to the curriculum or considered for addition in the last 10 years included COVID-19, Zika virus, mRNA vaccines, and Mpox (formerly known as monkeypox). Most respondents reported lectures and active learning as the major methods for topic delivery, with most faculty indicating that formative assessment was the best way to assess emerging topics. Content experts and course directors were the most cited individuals making these decisions. Top reasons for incorporating emerging topics into curricula included preparing students for clinical treatment of cases, followed by demonstrating the importance of basic science, and opportunities to integrate basic science into other disciplines. Challenges for incorporating these topics included making room in an already crowded curriculum, followed by content overload for students. CONCLUSIONS: This study describes the rationale for integrating emerging topics related to microbiology and immunology into UME, and identifies the current new and emerging topics, as well as the main methods of integration and assessment. These results may be used by medical educators to inform curricular decisions at their institutions. Future studies will include developing innovative learning modules that overcome barriers to integration.


Assuntos
Educação de Graduação em Medicina , Infecção por Zika virus , Zika virus , Humanos , Estados Unidos , Currículo , Aprendizagem Baseada em Problemas
15.
Gut Microbes ; 16(1): 2334970, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38563680

RESUMO

Gastrointestinal (GI) infection is evidenced with involvement in COVID-19 pathogenesis caused by SARS-CoV-2. However, the correlation between GI microbiota and the distinct pathogenicity of SARS-CoV-2 Proto and its emerging variants remains unclear. In this study, we aimed to determine if GI microbiota impacted COVID-19 pathogenesis and if the effect varied between SARS-CoV-2 Proto and its variants. We performed an integrative analysis of histopathology, microbiomics, and transcriptomics on the GI tract fragments from rhesus monkeys infected with SARS-CoV-2 proto or its variants. Based on the degree of pathological damage and microbiota profile in the GI tract, five of SARS-CoV-2 strains were classified into two distinct clusters, namely, the clusters of Alpha, Beta and Delta (ABD), and Proto and Omicron (PO). Notably, the abundance of potentially pathogenic microorganisms increased in ABD but not in the PO-infected rhesus monkeys. Specifically, the high abundance of UCG-002, UCG-005, and Treponema in ABD virus-infected animals positively correlated with interleukin, integrins, and antiviral genes. Overall, this study revealed that infection-induced alteration of GI microbiota and metabolites could increase the systemic burdens of inflammation or pathological injury in infected animals, especially in those infected with ABD viruses. Distinct GI microbiota and metabolite profiles may be responsible for the differential pathological phenotypes of PO and ABD virus-infected animals. These findings improve our understanding the roles of the GI microbiota in SARS-CoV-2 infection and provide important information for the precise prevention, control, and treatment of COVID-19.


Assuntos
COVID-19 , Microbioma Gastrointestinal , Animais , SARS-CoV-2 , Virulência , Macaca mulatta
16.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1594-1601, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621944

RESUMO

The ovarian germline stem cells(OGSCs) cultured in the optimized culture system were used as the research object to observe the effect of Tripterygium glycosides(TG) on OGSCs and explore the mechanism of reproductive toxicity by the Notch signaling pathway. Cell counting kit-8(CCK-8) was used to observe the viability level of OGSCs in mice cultured in vitro by TG of 3.75, 7.5, and 15 µg·mL~(-1). Immunofluorescence technology and reverse transcription-polymerase chain reaction(RT-PCR) were used to detect the protein and gene expression level of OGSCs marker mouse vasa homologue(MVH) and octamer-binding transcription factor 4(Oct4) by TG of 3.75 µg·mL~(-1). RT-PCR detected the gene expression of neurogenic locus Notch homolog protein 1(Notch1), Hes family BHLH transcription factor 1(Hes1), and jagged canonical Notch ligand 1(Jagged1). The RNA was extracted for transcriptome analysis to analyze the mechanism of action of TG intervention on OGSCs. 3.75 µg·mL~(-1) of TG was combined with 40 ng·mL~(-1) Notch signaling pathway γ-secretagocin agonist jagged canonical notch ligand(Jagged) for administration. CCK-8 was used to detect the viability level of OGSCs. Double immunofluorescence technology was used to detect the protein co-expression of MVH with Hes1, Notch1, and Jagged1. The results showed that compared with the blank group, the TG administration group significantly inhibited the activity of OGSCs(P<0.01 or P<0.001). It could reduce the protein and gene expression of OGSC markers, namely MVH and Oct4(P<0.05, P<0.01, or P<0.001). It could significantly inhibit the gene expression of Notch1, Hes1, and Jagged1(P<0.001). Transcriptomic analysis showed that TG affected the growth and proliferation of OGSCs by intervening Jagged1, a ligand associated with the Notch signaling pathway. The experimental results showed that the combination of Notch signaling pathway γ-secretagorein agonist Jagged could significantly alleviate the decrease in OGSC viability induced by TG(P<0.001) and significantly increased the OGSC viability compared with the TG group(P<0.001). It also could significantly increase the co-expression of MVH/Jagged1, MVH/Hes1, and MVH/Notch1 proteins(P<0.01 or P<0.001). It suggested that TG play the role of γ-secretagorease inhibitors by downregulating the OGSC markers including MVH and Oct4 and Notch signaling pathway molecules such as Notch1, Hes1, and Jagged1, participate in the OGSC pathway, and mediate reproductive toxicity caused by the Notch signaling pathway.


Assuntos
Células-Tronco de Oogônios , Camundongos , Animais , Células-Tronco de Oogônios/metabolismo , Tripterygium , Ligantes , Transdução de Sinais
17.
ACS Omega ; 9(15): 17458-17466, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38645310

RESUMO

The flow field design of the proton exchange membrane fuel cell (PEMFC) had a great impact on the performance and lifespan of the cell. To improve the uniformity of the substance component inside the PEMFC, referring to the serpentine flow field, a kind of compensating flow field is designed and investigated. Under the same conditions, the homogeneity of the two flow field structures is compared, and the influence of the homogeneity of two flow field distributions on the performance of the PEMFC is further analyzed. The polarization curve, maximum pressure difference at the inlet and outlet of the flow channel, and thermal stress generated by temperature gradients are used as performance indicators for evaluating the performance of the cell. The results show that after compensation, the distribution uniformity of each component in the flow field is improved, and the power density, water management, and thermal management capabilities are better than those in the traditional flow field design. Furthermore, the thermal performance of the single-layer cell and five-layer stack was compared. The results show that the more fuel cell layers, the greater the temperature difference within the cell, which will result in greater thermal stress. In the compensation flow field, the thermal stress of a single-layer unit is 14% lower than that of a serpentine flow field, and the thermal stress of a five-layer stack is 20% lower.

18.
Dalton Trans ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38646683

RESUMO

A series of novel dinuclear NHC-gold-thiolato and -alkynyl complexes bearing aromatic linkers were successfully synthesized by an efficient and simple synthetic route. The catalytic activity of these complexes was tested in a lactonization reaction. The reaction proceeds in high efficiency, in short reaction time and under mild conditions, and is complementary to existing methods. Furthermore, the digold(I)-thiolato derivatives exhibit remarkable cytotoxicity towards several cancer cell lines.

19.
J Genet Genomics ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38582298

RESUMO

The phenotypic diversity resulting from artificial or natural selection of sheep has made a significant contribution to human civilization. Hu sheep are a local sheep breed unique to China with high reproductive rates and rapid growth. Genome selection signatures have been widely used to investigate the genetic mechanisms underlying phenotypic variation in livestock. Here, we conduct whole-genome sequencing of 207 Hu sheep and compare them with the wild ancestors of domestic sheep (Asiatic mouflon) to investigate the genetic characteristics and selection signatures of Hu sheep. Based on six signatures of selection approaches, we detect genomic regions containing genes related to reproduction (BMPR1B, BMP2, PGFS, CYP19, CAMK4, GGT5, and GNAQ), vision (ALDH1A2, SAG, and PDE6B), nervous system (NAV1), and immune response (GPR35, SH2B2, PIK3R3, and HRAS). Association analysis with a population of 1299 Hu sheep reveal those missense mutations in the GPR35 (GPR35 g.952651 A>G; GPR35 g.952496 C>T) and NAV1 (NAV1 g.84216190 C>T; NAV1 g.84227412 G>A) genes are significantly associated (P < 0.05) with immune and growth traits in Hu sheep, respectively. This research offers unique insights into the selection characteristics of Hu sheep and facilitates further genetic improvement and molecular investigations.

20.
Artigo em Inglês | MEDLINE | ID: mdl-38553306

RESUMO

PURPOSE: To explore the role and mechanism of heat shock protein 27 (HSP27) in SACC VM formation. STUDY DESIGN: Immunohistochemistry and double staining with cluster of differentiation 31 (CD31) and periodic acid-Schiff (PAS) were used to detect HSP27 expression and VM in 70 SACC tissue samples separately. Quantitative real-time polymerase chain reaction (qRT-PCR), western blot analysis, and immunofluorescence were used to detect gene and protein expression. HSP27 in SACC cells were overexpression or downregulated by transfecting HSP27 or short hairpin RNA target HSP27 (sh-HSP27). The migration and invasion abilities of SACC cells were detected using wound healing and Transwell invasion assays. The VM formation ability of the cells in vitro was detected using a Matrigel 3-dimensional culture. RESULTS: HSP27 expression was positively correlated with VM formation and affected the prognosis of patients. In vitro, HSP27 upregulation engendered VM formation and the invasion and migration of SACC cells. Mechanistically, HSP27 upregulation increased Akt phosphorylation and subsequently increased downstream matrix metalloproteinase 2 and 9 expressions. CONCLUSION: HSP27 may plays an important role in VM formation in SACC via the AKT-MMP-2/9 signalling pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...